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ABSTRACT 

 

 In the analysis of income and wage size distributions statistical measures of concentration are often 

used.  They usually become basic tools in the investigations concerning  poverty and  social welfare issues. 

They can also be helpful to analyze the efficiency of a tax policy or to measure the level of social stratification 

and polarization.  Among many income inequality measures the Gini and Zenga coefficients are of greatest 

importance. Unfortunately the standard errors of these measures, being actually sample statistics, are rarely 

reported in practice.    

 

         Estimators of many concentration coefficients are nonlinear functions of sample observations 

thus their standard errors cannot  be obtained easily. The methods of variance estimation that can solve this 

problem include: various replication techniques as jackknife, bootstrap and BRR methods, Taylor expansion 

technique and some parametric procedures based on income distribution models.  

       In the paper some estimation methods for Gini and Zenga concentration measures are presented 

together with their application to the analysis of income distributions in Poland. This effort  was made to 

compare the NUTS1 regions in Poland from the point of view of income inequality. The basis for the 

calculations was individual data coming from the Household Budget Survey conducted by Polish Central 

Statistical Office in the years 2006-2008.  The variance estimates were obtained by means of the bootstrap 

and the parametric approach based on the Dagum type-I model.  
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ESTIMATORS   OF    INCOME 

INEQUALITY    MEASURES 

Among many income inequality (concentration) 

measures the Gini index is the most popular. It is 

mainly due to its good statistical properties and 

straightforward economic interpretation. Gini 

index of inequality can be defined as double the 

area between the Lorenz curve and „the line of 

equal shares”, that is the line describing perfect 

equality.  The Gini index can be expressed as 

follows: 
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where:    p= F(y)  is  a  cumulative distribution 

function of income,  L(p)-  the Lorenz function 

given by the following formula: 
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where μ denotes the expected value of a random 

variable Y and F
-1

(p) is the p
th

 quantile. 



 

      One can estimate the value of the Gini index 

from the survey data using the following formula:  
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where: y(i)- household incomes  in  a  non-    

descending order, 

            wi- survey weight for  i-th  economic units,  
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-  rank of  i-th economic unit in  n-

element sample.  

 

     Another interesting measure of income 

inequality based on a concentration curve was 

proposed by Zenga (1984).  It is called “point 

concentration measure”, being sensitive to 

changes of inequality in each part (point) of  a  

population.  Zenga synthetic inequality index can 

be expressed as the area below the Zenga curve Zp  

which is based on the relation between income 

and population quantiles:  
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where yp denotes the population p
th

  quantile and   

yp
*
 is the corresponding income quantile defined 

as follows; 

 

                     )(1* pQyp

                   (5) 

 

The function  Q(p) is usually called first moment 

distribution function and can be interpreted as 

cumulative income share related to the mean 

income.   

       Zenga synthetic inequality measures takes the 

form; 
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The commonly used nonparametric estimator of 

the Zenga index (6) was introduced by Aly and 

Hervas (1999) and can expressed by the following 

equation:  
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 where: yi:n - i-th order statistics  in  n-element 

sample based on weighted data, y  - sample 

arithmetic mean.  

 

INEQUALITY DECOMPOSITION BY 

SUBPOPULATIONS 

 

 The Gini index, being the function of  both: 

individual income  and the ranking of economic 

units, cannot be decomposed easily by population 

subgroups as well as  by factor components.   

Regardless of  these difficulties, a great effort has 

been made to specify the conditions under which 

the decomposition of the Gini coefficient by 

subgroups and by income components is feasible. 

Lerman and Yitzhaki (1984) introduced a clear 

decomposition of the Gini index by income 

components based on their covariance formula, 

providing a useful tool for income inequality 

analysis. The decomposition by subpopulations, 

however,  proved to be far more complicated. 

Since Shorrocks (1984) characterized the class of  

inequality indices that are decomposable by 

population subgroups, the Gini index has been 

considered to be decomposable only when the 

subpopulations do not overlap.  In fact, when the 

distributions overlap the third component called 

“overlapping” or “interaction term”, rather 

difficult to interpret, has to be taken into 

consideration. That “third component” was 

discussed by Pyatt (1976),  Silber (1989),  

Yitzhaki (1994), Deutsch and Silber (1999), to 

name only a few, what resulted in some 

interesting decomposition formulas. 

Unfortunately, they are computationally 

cumbersome and it is not always clear what 

meaningful interpretation each of the components 

has. 

       An interesting approach to the decomposition 

of the Gini index was proposed by Dagum (1997). 

It  introduces the concept of economic distance 

between subpopulations as an important element 

in the Gini index decomposition by subpopulation 

groups. The   interaction term is based on the 

concept of transvariation and can be viewed as a 

measure of distribution overlapping or the degree 

to which the incomes of different social groups 

cluster.  
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       The inequality decomposition proposed by 

Dagum (1997)  is based on the mean difference 

formula, expressing  the Gini index  as a relative 

dispersion measure. The mean difference Δ, being 

the absolute measure of dispersion,  can be  

defined  as the average absolute difference 

between all possible pairs of observations in a 

population of income receivers.  Gini (1912) 

showed that the geometric approach, given by the 

formula (1), is related to the statistical approach 

via the concept of  mean difference.   
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The last term  of the formula given  above 

represents the Gini index for a population divided 

into k subgroups (subpopulations). The Gini index 

for the sub-population j takes the form:  

 


 





h jn

r

n

i

jjrji

jj

j nyy
YY

G
1 1

2||
2

1

2
,  (9) 

 

where: jY - the mean income in group j,  nj -  

frequency.  

The Gini index expressed in terms of the Gini  

mean difference  can be also  generalized for 

two-populations case, measuring the between-

populations (or intra-groups ) inequality. Thus the 

extended Gini index between groups j and h can 

be written as follows:  

 

       


 












j h
n

i

n

r

hjhrji

hj

hj

jh

jh

nnyy
YY

YY
G

1 1

||
1

           
    (10) 

 

where jh  denotes  Gini mean difference 

modified for two income distributions. 

      The total Gini ratio calculated for a population 

of size n divided into k subpopulations,  can be 

decomposed as follows (Dagum, 1997) : 
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Gw – the contribution of within- groups 

inequality, 

Gb – the contribution of net between- groups 

inequality, 

Gt – the contribution of ”transvariation” to  the 

Gini  index. 

        The term  Djh,  called  economic distance 

ratio or  relative economic affluence (REA), is 

related to the normalized intensity of  

transvariation  (which is simply 1- Djh) and  can 

be regarded as the measure of relative economic 

affluence of the j-th subpopulation with respect to 

the h-th subpopulation. It can be defined as the 

weighted average of  income differences yji –yhr, 
calculated for all the members belonging to the 

population j-th with incomes grater than those of 

the members belonging to the population h, given 

that 
hj YY   (for details see: Dagum, 1980).  

       As it can be easily noticed the Gini index 

provides an unusual “between-group” component. 

It measures the income inequality between each 

and every pair of subpopulations, whereas entropy 

and most of between-groups inequality measures 

yield only the income inequalities between  

subpopulation means.  

 

VARIANCE  ESTIMATION   METHODS 
The precision  of  an  estimator    is  usually 

discussed in terms of its variance. In many cases  

the exact  value  of  this variance  is  unknown, 

because it depends on unknown population 

quantities. After survey data have been obtained, 

however, an appropriate estimate of estimator 

variance can be calculated. 

       Explicit  variance  estimators  are  often 

complicated and  it  is  hard  to derive their 

general mathematical formulas, especially for 

nonlinear estimators  and   complex sampling 

designs.  

     Most of  income concentration measures are 

nonlinear functions of sampling observations so 

their  standard errors are difficult to obtain and  

have rarely been reported in practice.  



       To solve this problem, some special 

approximate techniques for variance estimation 

can be used.  They include:  

 Taylor linearization technique, Wolter 

(1985); 

 Random groups method,  Mahalanobis 

(1944);  Hansen,  Hurwitz, Madow (1953);  

 Balanced Half Samples (BHS), also called 

Balanced Repeated Replication (BRR),  Mc 

Carthy  (1969), 

 Jacknife , Quenouille (1949), Durbin (1969) 

 Bootstrap , Efron (1979) 

 Parametric approach based on maximum 

likelihood theory.   

 Generalized Variance Function (GVF)-  

first applied in  Current Polpulation Survey 

CPS in 1947. 

In the context of inequality measures Taylor 

linearization, jackknife, bootstrap and parametric 

approach are the methods of variance estimation 

most often used.  

       The Taylor linearization technique   

approximates  the  nonlinear   estimator   ̂   by a  

pseudoestimator  g(Y)  which is  a linear function 

of sample observations.   It is  based on the first-

order Taylor expansion  around  θ  and neglecting 

the remainder term: 
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     The bootstrap method similarly to the jacknife 

was introduced outside the field of survey 

sampling as a means of obtaining approximate 

variance estimates and confidence  intervals (see.: 

Efron, 1979).  After drawing a series of  N  

independent „resamples”   (called  bootstrap 

samples)  by a design identical  to the one by 

which the sample was drawn from the population, 

we calculate  estimators    


kR    (k=1…N). The 

bootstrap variance estimator of  a statistic R  takes 

the form:  
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         Provided that an empirical income 

distribution can be approximated by a theoretical  

model described by  a probability density  

function  f(y,θ), the method of variance estimation 

based on  maximum likelihood theory can be 

used. ML estimators are asymptotically unbiased 

and normally distributed with variances given by 

the Cramer-Rao bound.  Let us assume that an  

inequality measure of  interest can  be  expressed  

as  a  function   g(θ ) of  the model parameters θ.  

       The variance of the ML estimator of an 

inequality measure g(θ) takes the form:  
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where: Iθ  denotes the Fisher information matrix.  

 

APPLICATION 

 

The methods given above were  applied to the 

analysis of income inequality in Poland. The basis 

for the calculations was the data coming from the 

Polish Household Budget Survey  (HBS)  

conducted in the years 2006 and 2008.  In 2006 

the randomly selected sample covered 37508 

households, i.e. approximately 0,3% of the total 

number of households, while in 2006 the total 

sample size was 37584.  The samples were 

selected by two-stage stratified sampling with 

unequal inclusion probabilities for primary 

sampling units.  In order to maintain the relation 

between the structure of the surveyed population 

and the socio-demographic structure of the total 

population, the data obtained from the HBS were 

weighted with the structure of households by 

number of persons and class of locality coming 

from Population and Housing Census 2002. To 

obtain inequality coefficients we used the 

formulas (3) and (7). Next, the decomposition  of 

income inequality in Poland by regions were done 

using equation (11). Finally, the estimates of  

standard errors  were obtained using two variance 

estimation methods: 

                   -bootstrapping,  

                  - parametric approach. 

The analysis was conducted after dividing the 

overall sample by region NUTS1 constructed 

according to the EUROSTAT classification. The  

estimates for the entire population of household 

were also calculated.   

      Table 1 depicts maximum likelihood estimates 

of the parameters of the Dagum type-I income 

distribution model. The values of overlap 

measure, reflecting  the  goodness-of-fit, are also 

reported in the table.   Relatively large values of 

this measure  ( 95% and more) confirm high 

consistency of the theoretical distributions that 

have been estimated  to the corresponding 

empirical ones. 



       The results of parametric estimation for Gini 

and Zenga coefficients are presented in  table 2. 

Estimated relative standard errors of the Gini 

index take value between  2% and 3%, while for 

the Zega index they vary from 3% to 5% with the 

most frequent value about 4%. 

 

Table 1.  Maximum likelihood estimates of the 

Dagum model parameters 

 

 

 

 

 

 

 

 

                                        

Table 2. Parametric estimates of the Gini and 

Zenga inequality measures and their standard 

errors   

 

Fig. 1.  Bootstrap  distribution  of  Gini   index  

estimator (N=5000) 

 

Source: author’s calculations 

 

Fig. 2. Bootstrap distribution of Zenga index  

estimator (N=5000)  

 

Source: author’s calculations 

Table 3. Gini index decomposition by regions  in 

2006 

 

Table 4.  Gini index decomposition by regions  in 

2008 

 

Region Year       
Sample 

size              Gini index  Ĝ  
)ˆ(GD  

(CV w %) 

Zenga index  

1Ẑ  
)ˆ(ZD  

(CV w %) 

1. Central 
2006 

2008 

1972 

2003 

0,3671 

0,3695 

0,0081 (2,2) 

0,0079 (1,9) 

0,3859 

0,3895 

0,0149 (3,9) 

0,0143 (3,7) 

2. Southern 
2006 

2008 

1916 

1883 

0,3157 

0,3249 

0,0066 (2,1) 

0,0068 (2,1) 

0,2961 

0,3118 

0,0109 (3,7) 

0,0114 (3,6) 

3. Eastern 
2006 

2008 

1679 

1651 

0,3357 

0,3568 

0,0076 (2,3) 

0,0083  (2,3) 

0,3299 

0,3668 

0,0132 (4,0)   

0,0146 (3,9) 

4. North-

western             

2006 

2008 

1441 

1438 

0,3340 

0,3429 

0,0082 (2,5) 

0,0086 (2,4) 

0,3270 

0,3425 

0,0143 (4,4) 

0,0150 (4,4) 

5. South-

western 

2006 

2008 

999 

1000 

0,3236 

0,3569 

0,0095 (2,9) 

0,0105 (2,9) 

0,3092 

0,3676 

0,0161 (5,2)  

0,0184 (5,0) 

6. Northern 
2006 

2008 

1339 

1330 

0,3610 

0,3422 

0,0098 (2,7) 

0,0087 (2,5) 

0,3751 

0,3412 

0,0178 (4,7) 

0,0151 (4,4) 

Source:author’s calculations 

Between group inequality Gb  0,0306    (9%) 

Within-group inequality Gw  0,0592  (18%) 

 contribution of- central   0,0182  

                       –  southern  0,0125  

                       –  eastern  0,0102  

                       – north-eastern  0,0079  

                       – north-western  0,0034  

                       – northern  0,0071  

Contribution of transvariation Gt   0,2475   (73%) 

Total income inequality G  0,3373 (100%) 

 

Dagum model parameters 
Region Year       

λ   
Overlap measure 

1. Central 
2006 

2008 

8,8473 

      23,0297 

1,029?  

0,8723 

2,7084 

2,7897 

0,9618 

0,9646 

2. Southern 
2006 

2008 

20,2299 

42,6820 

0,7837 

0,7344 

3,3689 

3,3323 

0,9622 

0,9557 

3. Eastern 
2006 

2008 

12,0879 

17,1291 

0,8334 

0,8219 

3,1113 

2,0331 

0,9676 

0,9582 

4. North-

western             

2006 

2008 

14,2599 

24,6655 

0,8798 

0,8873 

3,0846 

2,9967 

0,9615 

0,9581 

5. South-

western 

2006 

2008 

15,0147 

28,8773 

0,8499 

0,7551 

3,2141 

2,9976 

0,9712 

0,9587 

6. Northern 
2006 

2008 

6,8068 

28,1621 

1,0676 

0,7984 

2,7335 

3,0851 

0,9675 

0,9543 

Source: author’s calculations 

 



 

Source: author’s calculations 

Fig.3. Gini  index  decomposition  by  region 

 

 

 

The bootstrap and parametric variance estimators  

for the Gini index seem to be more stable than 

those of the Zenga measure. It can be  concluded 

that in general the estimator of the Gini index is 

more efficient than the corresponding estimator of 

synthetic Zenga inequality measure.   

      Despite relatively small number of repetitions, 

the bootstrap distributions of both inequality 

statistics can be approximated by the normal 

density curves (see: fig. 1 and 2). 

Analyzing the results of calculations 

presented in tables 3 and 4 one can easily notice 

that the regional income disparities in Poland are 

rather small- the between regions inequality is 

only  9% of the total Gini.  The substantial 

contribution of transvariation Gt , equal to 74%,  is  

an evidence of notable overlapping of income 

distributions for  NUTS1. To analyze the problem 

more thoroughly one can observe the economic 

distance ratios  D given by eq. (11), measuring the  

relative  economic affluence of one region with 

respect to another.  These values for all pairs of 

regions in Poland are rather small being 

approximately 0,05-0,1 and only  central region is 

significantly more affluent than the others. As a 

result, the transvariation component is dominated 

mainly by the overlapping between the 

distributions of central region and the other 

regions. The highest value of  D was observed for 

the regions:  central  and eastern. It is equal to 

0,22 what means that the economic situation of  

central voivodeships in Poland is by 22% better 

than the situation of the eastern ones, taking into 

consideration the differences in mean incomes as 

well as in the shapes of the  compared 

distributions. 

The Gini ratios and means within regions do 

not differ significantly (table 2)   so  the  

contributions of particular subpopulations to the 

overall inequality are determined mainly by  their 

sizes (table 2a). On the whole, the inequality 

within groups is responsible for only 17%  of the 

total inequality. 

 

CONCLUSIONS 

 

The interesting results of the decomposition of 

income inequality in Poland, obtained on the basis 

of  household budgets’ data, suggest that this 

approach  can be helpful for better understanding 

of the problem and can be used in many further 

economic analysis, including poverty and social 

welfare investigations. Decomposition of income 

inequality measures by sub-populations  can be 

useful in comparing income distributions  by 

assessing the contributions of between-group and 

within-group inequalities to the overall inequality 

of a population. It can also be useful in 

stratification and market segmentation by 

including the concept of overlapping.   
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